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A long-standing unresolved problem in non-Newtonian fluid mechanics, namely, the
relationship between friction drag and flow rate in inertialess complex kinematics
flows of dilute polymeric solutions is investigated via self-consistent multiscale flow
simulations. Specifically, flow of a highly elastic dilute polymeric solution, described
by first principles micromechanical models, through a 4:1:4 axisymmetric contraction
and expansion geometry is examined utilizing our recently developed highly efficient
multiscale flow simulation algorithm (Koppol, Sureshkumar & Khomami, J. Non-
Newtonian Fluid Mech., vol. 141, 2007, p. 180). Comparison with experimental measure-
ments (Rothstein & McKinley, J. Non-Newtonian Fluid Mech., vol. 86, 1999, p. 61)
shows that the pressure drop evolution as a function of flow rate can be accurately
predicted when the chain dynamics is described by multi-segment bead-spring
micromechanical models that closely capture the transient extensional viscosity of
the experimental fluid. Specifically, for the first time the experimentally observed
doubling of the dimensionless excess pressure drop at intermediate flow rates is
predicted. Moreover, based on an energy dissipation analysis it has been shown that
the variation of the excess pressure drop with the flow rate is controlled by the flow-
microstructure coupling in the extensional flow dominated region of the flow. Finally,
the influence of the macromolecular chain extensibility on the vortex dynamics, i.e.
growth of the upstream corner vortex at low chain extensibility or the shrinkage of
the upstream corner vortex coupled with the formation of a lip vortex that eventually
merges with the upstream corner vortex at high chain extensibility is elucidated.

1. Introduction
Continuum level flow simulation of complex kinematics flows of dilute polymeric

solutions has attracted considerable attention in the past two decades. However, in
mixed kinematics flows continuum level and elastic dumbbell-based self-consistent
multiscale flow simulations have not been able to quantitatively describe the
experimentally observed flow dynamics, such as vortex growth, free surface and/or
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interface motion, or the measured frictional drag properties to date (Talwar &
Khomami 1992, Szabo, Rallison & Hinch 1997; Grillet et al. 1999; Yang &
Khomami 1999; Al-Mubaiyedh, Sureshkumar & Khomami 2000; Li et al. 2000;
Lee, Shaqfeh & Khomami 2002; Keunings 2004; Binding, Phillips & Phillips 2006).
This lack of quantitative prediction of experimental findings can be attributed to
the fact that elastic dumbbell-based closed form constitutive equations such as the
FENE-P, FENE-CR and FENE-LS or micromechanical elastic dumbbell models
can at best provide qualitative predictions of the macromolecular dynamics even in
homogenous kinematics flows (Larson 2005; Shaqfeh 2005). However, mesoscopic
level micromechanical descriptions, such as the bead-rod and bead-spring models
with sufficient internal degrees of freedom have been found to predict both the
dynamics of individual polymer molecules as well as the macroscopic rheological
properties of dilute solutions with good accuracy, i.e. shear and extensional viscosity
and first normal stress difference (Larson 2005; Shaqfeh 2005). These findings clearly
underscore the necessity of multiscale simulations based on detailed mesoscopic
level micromechanical models for quantitative prediction of the flow dynamics. This
need has motivated development of a number of multiscale simulation techniques,
namely, calculation of non-Newtonian flows: finite elements and stochastic simulation
technique (CONNFFESSIT) (Laso & Öttinger 1993; Laso, Picasso & Öttinger 1997),
Lagrangian particle method (LPM) (Halin et al. 1998) and Brownian configuration
fields (BCF) (Hulsen, van Heel & van den Brule 1997; Öttinger, van den Brule &
Hulsen 1997; Somasi & Khomami 2000, 2001). Although, the utility of these
techniques in modelling dynamics of dilute polymeric solutions in a variety of complex
kinematics benchmark flows (e.g. flow past a cylinder, sedimentation of spheres, etc)
has been demonstrated, to date the micromechanical models used in this class of
simulations have been very simplistic, i.e. the dilute solution has been modelled as a
suspension of non-interacting single segment elastic dumbbells (e.g. Hua & Schieber
1998; Wapperom, Keunings & Legat 2000; Hu, Ding & Lee 2005; Bajaj et al. 2006;
Philips & Smith 2006; Koppol, Sureshkumar & Khomami 2007).

Motivated by the superior predictive capability of bead-spring chain descriptions
in homogenous kinematics flows, in this study we have pursued multiscale flow
simulation of the 4:1:4 axisymmetric contraction and expansion flow, a long-standing
benchmark complex kinematics flow problem, using bead-spring chain representation
of the polymer molecules. Specifically, the micromechanical model parameters have
been selected to closely match the measured rheological properties of a 0.025 wt %
solution of a high molecular weight polystyrene (PS) dissolved in a low molecular
weight polystyrene solvent (referred to as 0.025 wt % PS/PS Boger fluid). This choice
of the flow geometry and the test fluid has been motivated by the fact that contraction
expansion flows contain many essential flow features of typical polymer processing
operations as well as the wealth of experimental data (Rothstein & McKinley 1999,
2001) on: (a) rheological properties of the test fluid, and (b) friction drag properties
and vortex dynamics of the flow.

In addition to the aforementioned experimental studies by Rothstein & McKinley,
many other investigators have focused their attention on measuring and predicting
the frictional drag properties in this benchmark flow geometry as well as elucidating
its vortex evolution pathways. Overall, the experimental studies (Cogswell 1972;
Eisenbrand & Goddard 1982; Binding & Walters 1988; Boger & Binnington 1990,
1994; James & Chandler 1990; Cartalos & Piau 1992; Nigen & Walters 2002;
Binding et al. 2006) have demonstrated that the dimensionless excess pressure drop
(i.e. normalized with respect to its Newtonian flow counterpart) is close to unity at
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small Deborah number (De, defined as the ratio of the fluid mean relaxation time to
the characteristic deformation rate in the contraction tube) and at a critical flow rate
corresponding to De ∼= 0.5 it increases almost linearly until it reaches a plateau of
approximately 3 at high flow rates (De ∼= 5). In addition, at De ∼= 2.0 a hydrodynamic
instability is observed resulting in a transition from the two-dimensional axisymmetric
steady flow to a three-dimensional time-dependent flow.

Rothstein & McKinley (1999, 2001, 2002) have hypothesized that the stress-
conformation hysteresis (stress-conformation hysteresis behaviour arises due to
distinct paths along which the polymer stress versus the polymer molecular
conformation evolves during the stretching period in the contraction followed by the
polymer relaxation downstream of the contraction) is responsible for the observed
pressure drop enhancement for De � 2.0. Specifically, they conjectured that the
coupling between the polymer stress and the flow kinematics during the distinct
stretching and relaxation paths along the centreline of the flow geometry results in a
net dissipation of energy leading to the enhancement of the pressure drop. However,
the influence of stress-conformation hysteresis on friction drag properties of mixed
kinematics flows has not been directly examined. This is mainly due to the fact that
computational studies have generally failed to predict the experimentally observed
pressure drop enhancement in many complex kinematics flows (Coates, Armstrng &
Brown 1992; Keiller 1993; Oliveira et al. 2007). In fact to date, contraction/expansion
flow simulations with closed form constitutive equations such as Oldroyd-B (Binding
et al. 2006) and FENE-CR (Szabo et al. 1997) have generally predicted a reduction
in the pressure drop with increasing De. The exceptions are computations with very
low macromolecular finite extensibilities that have reported an initial decrease in the
pressure drop followed by a very small increase of the order of 10 % (Szabo et al.).

The influence of fluid rheology on the vortex evolution pathways has also
been extensively investigated. Overall, two predominant patterns are observed
experimentally. These include, the growth of the upstream corner vortex (Coates
et al. 1992; Purnode & Crochet 1996; Szabo et al. 1997; Rothstein & McKinley 1999,
2001) or the shrinkage of the upstream corner vortex coupled with formation and
growth of a lip vortex (Lawler et al. 1986; Boger 1987; Boger & Binnington 1990,
1994; McKinley et al. 1991; Mompean & Deville 1997; Alves, Oliveira & Pinho 2004;
Kim et al. 2005) that eventually merges with the upstream corner vortex.

This brief overview of the contraction/expansion flow of dilute polymeric solutions
clearly highlights that even in the case of this long-standing benchmark flow problem,
quantitative predictions of the frictional drag characteristics of dilute polymeric
solutions have not been accomplished and more importantly the mechanism leading
to the enhanced frictional resistance has not been established. To this end, results
of a self-consistent multiscale flow simulation in a 4:1:4 axisymmetric contraction
and expansion geometry is presented that for the first time provides a quantitative
description of the enhanced pressure drop as a function of De in a 0.025 wt % PS/PS
Boger fluid. In addition, based on an energy dissipation analysis the mechanism of
the enhanced pressure drop observed in this class of flows is elucidated. Finally, we
briefly discuss the influence of the macromolecular chain extensibility on the vortex
dynamics.

2. Flow geometry
The 4:1:4 axisymmetric contraction and expansion flow geometry is schematically

represented in figure 1(a). In this geometry the fluid flows from an upstream tube



234 A. P. Koppol, R. Sureshkumar, A. Abedijaberi and B. Khomami

R2

R1

r
z

Lv

Ld

1.8R2

Corner 
vortex

Reentrant
corner

curvature:
0.25R2

Salient
corner

Lip 
vortex

22R2 28.2R2

(R1-ξ)

ζ

(a)

(b) (c)

Figure 1. (a) Schematic diagram of the 4:1:4 axisymmetric contraction and expansion flow
geometry; (b) 2736 elements mesh topology near the contraction expansion region; (c) 5476
elements mesh topology near the contraction expansion region.

of radius R1 into a narrow contraction tube of radius R2, and then back into
a downstream tube of radius R1. The contraction ratio, defined as R1/R2 and
the contraction length (Lc/R2) are set to 4 and 1.8, respectively, to match the
experimental study of Rothstein & McKinley (1999, 2001). In addition, the upstream
and downstream tubes of the flow geometry are chosen to be sufficiently long so that
fully developed flow can be assumed at the entrance and exit.

In the presence of the sharp re-entrant corners, polymer stress singularities are
observed in numerical simulations of viscoelastic fluids (Renardy 1997; Rallison &
Hinch 2004). Motivated by the experimental flow geometry, rounded corners with the
radius of curvature (Rc/R2) of 0.25 have been chosen to avoid stress singularities. It
should be noted that rounding of the re-entrant corner does not qualitatively alter
the pressure drop enhancement and vortex characteristics, but it has been found to
delay the onset of the aforementioned flow transition from two-dimensional steady
to a three-dimensional time-dependent flow (Rothstein & McKinley 2001).
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3. Problem formulation
3.1. Governing equations

The equations governing creeping isothermal flow of a dilute polymeric solution in
the absence of body forces are as follows:

−∇P + ∇ · τ = 0, (1)

∇ · u = 0, (2)

where u, the velocity vector is non-dimensionalized with respect to uz,max (z = 0), which
is the maximum velocity at the entrance of the flow geometry. The pressure P and
the stress tensor τ have been made dimensionless with respect to ηouz,max (z = 0)/R2

in which ηo is the fluid zero shear viscosity. The total stress τ is split into a polymeric
contribution τp and a solvent contribution τs (i.e. τ = τp + τs). The solvent is assumed
to be a Newtonian fluid. Hence, τs = 2βγ̇ , where γ̇ = 1

2
(∇u + ∇uT ) is the rate of

deformation tensor, β = ηs/ηo and ηs is the solvent viscosity.
At the continuum level, the polymeric stress τp is obtained by using the FENE-P

constitutive equation (Bird et al. 1987):

τp + We(τpz)(1) + (1 − β)(Iz)(1) = 0, (3)

where We is the Weissenberg number defined as λmuz,max (z = 0)/R2 in which λm is the
mean relaxation time of the polymer, and

z = 1
/(

1 +
3

b
+

We

(1 − β)b
Tr(τp)

)
, (4)

where b is the maximum chain extensibility and Tr is the trace. The subscript (1)
denotes the upper-convected derivative operator expressed as follows:

( )(1) =
∂( )

∂t
+ u · ∇( ) − κ · ( ) − ( ) · κT , (5)

where k = ∇uT .
When the polymer dynamics is described by a FENE dumbbell or a bead-spring

chain, τp is evaluated using the Kramers’ expression (Bird et al. 1987):

τp =
(1 − β)

We∗

N∑
i=1

(〈Fi Qi〉 − 〈Fi Qi〉eqbm), (6)

where We∗ = We/(1 + 5/b) (Wiest & Tanner 1989), N is the number of segments in
the bead-spring chain, bs = NHQ2

0

/
kBT , Q0 is the maximum extensibility of each

segment, H is the spring constant, Qi is the segmental connectivity vector which is

non-dimensionalized with respect to its equilibrium length
√

kBT /H , 〈 · 〉 denotes the
ensemble average, 〈Fi Qi〉eqbm = I (the unit tensor) and Fi is the nonlinear FENE force
law for the ith segment given by

Fi =
Qi

1 −
(
NQ2

i /bs
) . (7)

The temporal evolution of the segmental connectivity vector Qi of the ith segment
of the FENE bead-spring model under flow is determined using the Brownian
configuration field (BCF) approach (Hulsen et al. 1997; Somasi & Khomami 2000)
since it is ideally suitable for implementation in the finite element context. The BCF
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evolution equation for the segmental connectivity is given as

d Qi(x, t) =

[
−u(x, t) · ∇ Qi(x, t) + κ(x, t) · Qi(x, t) +

FE
i

4We

]
dt

+

√
1

2We
[d W i+1(t) − d W i(t)], (8)

where

FE
i =

⎧⎨
⎩

− 2Fi + Fi+1; i = 1,

Fi−1 − 2Fi + Fi+1; 1 < i < N,

Fi−1 − 2Fi; i = N.

(9)

The last term in (8) accounts for the Brownian force experienced by the ith
bead, which is characterized by the Wiener process (dWi(t)) which is mathematically
represented as a Gaussian random vector with a zero mean and a dt variance.

3.2. Computational technique

The discrete elastic viscous stress splitting (DEVSS-G) finite element formulation
(Guenette & Fortin, 1995; Li et al. 1998) is used to discretize the momentum and
mass conservation equations. The weak forms of these equations are obtained using
the Galerkin procedure:

[(∇v) : (∇u + ∇uT − P I + τp − (1 − β)(G + GT ))] = [v : σ ]Γ , (10)

[q ; ∇ · u] = 0, (11)

[g : (G − ∇u)] = 0. (12)

In the above equations G is the discrete interpolant for the velocity gradient (∇u).
[a : b], [a; b] and [a : b]Γ are the standard inner products of (a, b) in the flow domain
Ω and on the boundary Γ , respectively. Here σ is the traction vector on the boundary.

Hierarchic shape functions based on the Legendre polynomials (Szabo & Babuska
1987; Somasi & Khomami 2000) are used to approximate the variables within the
quadrilateral finite elements used to discretize the flow domain Ω . Specifically, in
accordance with the Brezzi–Babuska condition (Khomami et al. 1994) second-order
polynomials (p = 2) are used to approximate the velocity components, while bilinear
shape functions (p = 1) are used for the velocity gradient and pressure variables.
Moreover, similar to our earlier studies (Talwar, Ganpule & Khomami 1994; Somasi
& Khomami 2000) bilinear shape functions (p = 1) are used to approximate the stress
variables.

The FENE-P closed form constitutive equation and the segmental connectivity
vector equation are discretized using the SUPG technique function where the Galerkin
weight function φ is modified as follows, Y= φ + (u · ∇φ)h/|u|, with h being the
characteristic element length (Brooks & Hughes 1982; Smith et al. 2000; Somasi &
Khomami 2000). This results in the following set of equations:

[(τp + We(τpz)(1) + (1 − β)(I z)(1)) : Y] = 0, (13)

[(d Qi −
(

−u · ∇ Qi + κ · Qi +
1

4We
FE

i

)
dt −

√
1

2We
(dWi+1(t) − dWi(t))) : Y] = 0,

(14)
where Y is selected from the bilinear continuous polynomial space (p = 1).
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Mesh characteristic 2736 Element mesh 5476 Element mesh

Number of nodes 2904 5711
Number of sides 5639 11186
Min. characteristic length 0.0227 0.0209

Table 1. Domain discretization details.

Variable(s) DOF: 2736 Element mesh DOF: 5476 Element mesh

u 11 279 22 373
P 2904 5711

G and τ 11 616 22 844
Q when N = 1 and Nf = 1024 8 921 088 17 544 192
Q when N = 3 and Nf = 960 25 090 560 49 343 040

Table 2. Degrees of freedom (DOF) for each variable.

For the FENE dumbbell or the bead-spring chain, τp is evaluated using the
Kramers’ expression via Galerkin projection:[(

τp − (1 − β)

We∗

N∑
i=1

(〈Fi Qi〉 − I)

)
: a

]
= 0, (15)

where a is chosen from the bilinear continuous polynomial space (p = 1).

3.3. Boundary conditions

The boundary conditions are the standard no slip boundary condition (ur = uz = 0)
along the wall, symmetry boundary condition (ur =0, ∂uz/∂r = 0) along the centreline
(r =0), fully developed unidirectional velocity profile and stresses are enforced at the
entrance and exit. The reference value for P is set to zero at the exit, and the value
of the pressure at the entrance, which is a function of We is computed.

3.4. Domain discretization

The flow domain has been divided into structured finite element meshes consisting
of quadrilateral elements. Two meshes of sizes 2736 and 5476 elements based on the
same topology have been used to simulate the flow. This level of mesh refinement
has been shown to provide accurate solutions in prior continuum level simulations
with the FENE-CR constitutive equation (Szabo et al. 1997). The magnified mesh
configurations near the contraction are shown in figures 1(b) and 1(c). Details of the
principal characteristics of each mesh are presented in table 1, and the degrees of
freedom corresponding to each of the variables are given in table 2.

3.5. Computational details

The FENE dumbbell and bead-spring self-consistent multiscale contraction/
expansion flow simulations have been performed using our recently developed,
highly efficient, parallel multiscale simulation algorithm (Koppol et al. 2007). In
these simulations a time step �t = 10−3 and a tolerance ε = 10−3 for convergence
within each time step has been employed. The number of configuration fields Nf

used for the FENE dumbbell and FENE chain simulations were 1024 and 960,
respectively. The FENE-P computations were performed using the semi-implicit
predictor-corrector scheme described in detail in Koppol (2007) with �t =10−3 and
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Model 2736 Element mesh 5476 Element mesh

3seg FENE bmax = 225 De = 0.043, 0.087, 0.130, 0.217, –
0.304, 0.372, 0.45, 0.5

FENE-P bmax = 300 De = 0.043, 0.087, 0.130, 0.173, De = 0.260, 0.303, 0.390, 0.477, 0.520,
0.217 0.542, 0.563, 0.585, 0.607

1seg FENE bmax = 1800 De = 0.043, 0.217, 0.347, 0.520, De = 0.915, 1.018, 1.232, 1.326, 1.506
0.650, 0.813

3seg FENE bmax = 4500 De = 0.043, 0.130, 0.217, 0.303, De = 0.813, 0.915, 1.018, 1.232, 1.326
0.450, 0.650

Table 3. Details of finite element meshes used for computations with specific models at
various De.

ε =10−3. To accelerate convergence first-order continuation in We was utilized. To
enhance the accuracy of the mean and reduce the standard deviation of the results of
the self-consistent multiscale simulation, steady state results have been obtained by
averaging the statistically stationary results of at least 3000 time steps.

Rothstein & McKinley (1999, 2001) have reported their experimental results as
a function of the Deborah number De = λ0〈uz〉2/(R2 + Rc) defined based on the
characteristic zero shear relaxation time of the fluid (λ0) and the characteristic
deformation rate in the contraction with rounded re-entrant corners, 〈uz〉2/(R2 + Rc),
where 〈uz〉2 is the average velocity in the contraction. To facilitate comparison with the
experimental data, the simulation results are reported in terms of De (We ∼ 2.5 De).
Table 3 summarizes the mesh size used for all the FENE computations. As noted
earlier, the meshes used in this study have been shown to provide accurate solutions in
prior continuum level simulations with the FENE-CR constitutive equation. To this
end, we have adopted a simple strategy in our computations, namely, the 2736 element
mesh has been employed in the simulations up to De for which its solution was found
to be accurate. Higher De simulations were pursued with the 5476 element only when
interesting alterations in the vortex dynamics or the pressure drop enhancement were
anticipated. All the simulation results presented in this paper have been verified for
convergence (see § 5.1).

4. Fluid rheology
Figure 2 depicts the experimentally measured steady shear viscosity (η) and first

normal stress coefficient (Ψ1) as a function of the shear rate (γ̇ ). The solvent viscosity,
ηs , the zero shear viscosity η0 and the zero shear first normal stress difference, Ψ10, at
25◦ C are 21.0, 22.75 Pa.s and 6.66 Pa.s2, respectively. The ratio of the solvent viscosity
to fluid zero shear viscosity is defined as β = ηs/η0 = 0.92.

In addition, the small amplitude oscillatory shear flow properties, i.e. the dynamic
viscosity (η′) and rigidity (η′′/ω) versus the frequency of oscillation (ω), as well as the
transient extensional viscosity (ηE) at various strain rates (ε̇) (Rothstein & McKinley
1999, 2001) is also shown in figure 2. Various models, namely, FENE bead-spring
chains, FENE dumbbell and the FENE-P closed form constitutive equation have been
used to describe the rheological behaviour of the 0.025 wt % PS/PS Boger fluid. Linear
viscoelastic fits for η′ and η′′/ω demonstrate that two modes are essentially required
to quantitatively describe the small amplitude oscillatory shear flow behaviour of the
polymer molecules (see table 4, the third mode has a very small relaxation time, hence
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Mode (i) ηi (Pa.s) λi (s)

1 1.0695 2.8742
2 0.3509 0.1312
3 0.000255 21.33

λm =
2∑

i = 1

ηiλi/
2∑

i = 1

ηi = 2.197

Table 4. Linear viscoelastic properties of the 0.025 wt % PS/PS Boger fluid at 25◦ C.
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Figure 2. Rheological characterization of the 0.025 wt% PS/PS Boger fluid at 25◦ C (a) η

versus γ̇ , Ψ1 versus γ̇ , η′ versus ω, and η′′/ω versus ω; (b) ηE/η0 versus ε at ε̇ = 9.1 s−1;
(c) ηE/η0 versus ε at ε̇ = 1.5 s−1; (d ) ηE/η0 versus ε at ε̇ = 1s−1.

its contribution has been combined with the solvent). The mean relaxation time of
the polymer molecule (λm) based on this two mode description is found to be 2.197 s.

To determine the model time constant λH for the FENE dumbbell and the FENE-P
constitutive equation a proven technique, namely matching of the mean relaxation
time of the solution λm to the characteristic zero shear relaxation time (Ψ10/2ηp0) of the
model has been adopted (Somasi et al. 2002). In the case of the FENE bead-spring
chains, λH has been evaluated using the following expression derived by Weist &
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Model η0 ψ10

3seg FENE bmax = 225 24.333 ± 0.095 13.604 ± 0.593
FENE-P bmax = 300 22.729 7.439
1seg FENE bmax = 1800 22.658 ± 0.107 7.140 ± 0.533
3seg FENE bmax = 4500 24.369 ± 0.233 14.630 ± 0.637

Table 5. Zero shear properties, η0 and Ψ10 predicted by different polymer models.

Tanner (1989):

λH =
λm

d
, where d =

(
b + 7

15N

)(
1

b/N + 5

)(
(2(N + 1)2 + 7) − 12((N + 1)2 + 1)

(N + 1)(b/N + 7)

)
.

(16)

In the above expression the maximum chain extensibility, b of the FENE and
FENE-P models has been selected in order to reproduce closely the steady shear and
the transient extensional rheology of the fluid. It should be noted that the rheological
predictions of the FENE-based models have been obtained via Brownian dynamics
simulations using a semi-implicit predictor-corrector scheme (Somasi et al. 2002) with
the ensemble size Nt = 1024, while those of the FENE-P closed form constitutive
model has been obtained using the semi-implicit predictor-corrector scheme described
in detail in Koppol (2007). The time step �t for performing the time integration in
both of the semi-implicit predictor-corrector schemes has been chosen to be 10−3.

Also shown in figure 2 are the statistical errors of the computed quantities (
√

σ 2/Nt ,
where σ 2 is the variance of the quantity of interest).

Figure 2(a) summarizes the variation of η and Ψ1 versus γ̇ evaluated using
the FENE and FENE-P models with different b values. As expected, the FENE
and FENE-P models estimate the slight shear thinning of the fluid viscosity with
reasonable accuracy; however, models with lower b (i.e. 225 and 300) predict Ψ1

values that are closer to the experimental value as compared to models with higher
b values. However, it should be noted that the predictions of FENE models with
b =1800 and 4500 evidently will provide a good description of Ψ1 at higher γ̇ values
for which accurate experimental data is not available. Table 5 provides the predicted
zero shear properties by all the models.

The transient response of the FENE and FENE-P models with different b values
to a steady uniaxial extensional flow at different extension rates quantified in terms
of ηE = 3ηs + ηE

p , where ηE
p is the extensional viscosity contribution from the polymer

molecules is shown in figures 2(b), 2(c) and 2(d ). As expected, for ε < 1.5 the Trouton
ratio (ηE

/
η0) for both the FENE and FENE-P models is nearly 3.0. Moreover, the

strain hardening sets in for values of ε between 1.5 and 3.5. The insets in figures 2(b),
2(c) and 2(d ) show the strain hardening behaviour of the FENE and FENE-P models.
Specifically, the FENE model with b = 225 and the FENE-P models with b =300
demonstrate strain hardening at lower values of ε compared to the experimental
measurements. Whereas the one segment FENE model with b =1800 and the three
segment FENE model with b = 4500 predict the strain hardening at ε values similar
to those in the experiments, particularly at the higher strain rate, namely, ε̇ =9.1 s−1.
Moreover, for ε above 3.5, ηE predicted by the FENE model with b = 225 and the
FENE-P model with b =300 approach their steady state values, whereas ηE for all the
models with higher b continues to increase in accordance with the experimental data.
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Also, for values of ε > 3.5 the three segment FENE model with b = 4500 faithfully
reproduce the experimental measurement at ε̇ = 9.1 s−1, while the one segment FENE
model with b = 1800 somewhat under predicts ηE at this extension rate.

Overall, all the FENE and FENE-P models considered provide relatively similar
predictions for the steady shear properties (η and Ψ1). However, only the one segment
FENE model with b = 1800 and the three segment FENE model with b = 4500
provide a reasonably good prediction of ηE particularly in the experimental strain
range of interest, i.e. from 2.5 to 4, at De ∼ O(1), where significant excess pressure
drop enhancement is observed experimentally.

5. Results and discussion
5.1. Solution accuracy

As mentioned earlier, the domain discretizations used in this study have been
shown to provide accurate solutions in prior continuum level simulations with the
FENE-CR constitutive equation (Szabo et al. 1997). To demonstrate the accuracy
of the self-consistent multiscale simulations, the self-consistent stress profiles have
compared with those obtained based on a Lagrangian Brownian Dynamics (BD)
technique. This approach for establishing the solution accuracy has been adopted
since the conventional way of comparing solutions from multiple meshes is highly
computationally intensive in the case of the multiscale simulations evident from the
large number of degrees of freedom at each time step (table 2). Specifically, the
comparisons are made based on the τp,zz component of the polymeric stress because
of its large variation in the contraction/expansion region and with De as well as its
significant influence on the excess pressure drop enhancement.

The Lagrangian determination of the stress involves two steps. First, particle paths
are determined via integration of the local self-consistent velocity vector (u) using
the fourth-order Runge–Kutta method. In turn, BD simulations are conducted along
selected streamlines utilizing the semi-implicit predictor scheme of Somasi et al. (2002)
with the ensemble size Nt = 1024. The integrations are carried out by varying �t such
that the magnitude of u �t is fixed to a constant, 2×10−2 � A � 4×10−4. Specifically,
the constant is set to A when z ∈ [19, 25], 5A when z ∈ [16, 19) and (25, 32], and
25A when z ∈ [0, 16) and (32, 52]. With A � 1 × 10−4, converged results in the De

range of interest are obtained. At this level of refinement, highly spatially resolved
polymer stresses are obtained. Hence, the computed stresses utilizing this Lagrangian
procedure should provide a very stringent test of the self-consistent computed stresses.

Figure 3 depicts comparison of prototypical steady state τp,zz profiles along
streamlines near the wall and centreline of the channel in the vicinity of the contraction
at various De and finite chain extensibility. Overall, the excellent agreement between
the self-consistent simulations and the Lagrangian-based results clearly demonstrate
the accuracy of the self-consistent multiscale simulation results.

5.2. Pressure drop enhancement

To make a one-to-one comparison with the experimental data, the model predictions
will be presented in terms of the dimensionless pressure drop P̃ which is defined as
the ratio of the extra pressure drop for the non-Newtonian flow (De > 0) through
the geometry with a prescribed re-entrant corner curvature to that of the Newtonian
flow (De = 0) at the same flow rate with sharp re-entrant corners:

P̃ =
�PEx(De � 0, Rc)

�PEx(De = 0, Rc = 0)
. (17)
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Figure 3. Representative stress profiles (τp,zz). Three segment bead-spring chain with b =225
along streamlines originating form (a) (0, 3.7) and (b) (0, 0) whose paths are shown in
(c). FENE dumbbell with b = 1800 along streamlines originating form (d ) (0, 3.7) and (e)
(0, 0) whose paths are shown in (f ).

With this definition, the extra pressure drop �PEx is then solely due polymer
modification of the pressure drop in the contraction and expansion flow alone,
since the pressure drop caused due to the Poiseuille flow in the straight upstream
(�Pup = 5.5), downstream (�Pdown =7.05) and contraction (�Pcon = 115.2) tubes have
been subtracted from the total pressure drop across the flow geometry (�P ).
Rothstein & McKinley (1999, 2001) have approximated the extra pressure drop
for the Newtonian flow �PEx(De =0, Rc = 0)) utilizing Sampson’s solution for the
pressure drop across the orifice with sharp corners in an infinite rigid wall (Happel &
Brenner 1965). This value when corrected for an orifice with finite aspect ration and
scaled with ηouz,max (z = 0)/R2 is 75.4. The available experimental measurements for
P̃ , however, are for the flow geometry that contains a rounded re-entrant corner.
Hence, P̃ has been shifted using the procedure outlined by Rothstein & McKinley
(2001):

P̃ shift (De) = P̃ (De) + Cs, (18)

where Cs is defined as Cs(β,Rc) =Psharp(De =0) − Pcurved (De = 0). This Couette-like
correction term is used to take into account the pressure observed in the Newtonian
flow through the curved entrance region. Figure 4 depicts the evolution of the shifted
dimensionless pressure drop P̃ shift with De. It should be noted that at De ≈ 0, P̃ shift ,
for the one segment FENE and FENE-P models, approaches the expected value of 1.
However, for the three segment FENE models, �P has to be scaled (at all De) with
η

3seg

0 uz,max (z = 0)/R2 instead of ηouz,max (z = 0)/R2 before computing P̃ and shifting it

(η3seg

0 corresponds to the fluid zero shear viscosity predicted by three segment FENE
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Figure 4. Dimensionless excess pressure drop (P̃shift ) as a function of De.

models). This demonstrates the importance of matching the model estimated zero
shear viscosity with that of the fluid (η0) to capture the experimentally observed
pressure drop in the limit of De → 0.

As De is enhanced, the computed P̃ shift for all the models pass through a minimum
after which they increase monotonically to a value well above that of the Newtonian
flow. Also as the chain maximum extensibility is enhanced the minimum value
reached decreases. This observation is consistent with the earlier computations with
the FENE-CR (Szabo et al. 1997) and Oldroyd-B (Binding et al. 2006) constitutive
models. Furthermore, as the chain extensibility increases, the onset of growth of P̃ shift

occurs at a higher De in a very similar manner as the onset of the strain hardening
of the transient extensional viscosity (ηE) at higher Hencky strains. Hence, both
FENE and FENE-P models with low chain finite extensibility highly over predict the
experimentally measured excess pressure drop enhancement, while, the FENE models
with high finite extensibility that can faithfully capture the experimentally measured
ηE at high strain rates, provide a reasonable good prediction of the excess pressure
drop enhancement. In particular, the three segment FENE chain with maximum
extensibility of 4500 accurately predicts the measured pressure drop enhancement at
De ∼ O(1).

5.3. Energy dissipation analysis

In the above discussion, it has been suggested that the predicted excess pressure drop
as a function of De is closely correlated with the strain hardening character of the
fluid. In order to ascertain the relationship between the excess pressure drop and the
extensional characteristics of the test fluid, we have carried out an energy dissipation
analysis. It is well known that the rate of stress work (Ẇ ) within an arbitrary control
volume (V ), in the absence of body forces, can be expressed in terms of the integral
over its surface (S) as:

Ẇ =

∫
S

u · π · n̂ dS, (19)

where u is the local fluid velocity, π = − P I + τs + τp is the total stress on the surface
element dS with a unit outward normal n̂. Moreover, for creeping flows (∇ · π = 0) the
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Figure 5. (a) Control volumes selected for the computation of the rate of stress work;
(b) normalized stress work in the near wall region; (c) normalized stress work in the centreline
region; (d ) rate of elastic stress work (ẆE) in the centreline region; (e) rate of viscous stress
work (ẆV ) stress work in the centreline region.

surface integral in (19) can be simplified to a volume integral:

Ẇ =

∫
V

π : ∇u dV. (20)

Since the flow under consideration is periodic and u = 0 along the stationary walls,
equation (19) reduces to a simple relation between the rate of stress work in the
entire flow domain (Ẇtot ) and the pressure drop across the flow geometry�P , i.e.
Ẇtot = Q�P . Evidently, since �P is positive Ẇtot is always dissipative. Moreover,
because of the direct relation between Ẇtot and �P , evaluation of the rate of stress
work in a selected control volume within the flow domain provides a direct measure
of �P in the control volume. Hence, we have selected to evaluate the stress work
in two axisymmetric control volumes, one near the centreline (CV1) and the other
near the wall (CV2) (see figure 5a). The choice of these two control volumes has been
motivated by the fact that the polymeric stresses and their gradients are large in these
two domains, moreover, the flow in CV1 is mainly extensional, while the flow in CV2

is dominated by shearing forces.
Figures 5(b) and 5(c) depict the variation of Ẇ as a function of De. As expected, Ẇ

is positive in both control volumes indicating energy dissipation at all De. Moreover,
as De is enhanced Ẇ reduces to a minimum value and then generally increases. The
De at which the minimum in Ẇ is observed in CV1 is approximately the same as
the De where the minimum in the excess pressure drop is observed (see figure 4),
while in CV2 this minimum occurs at much higher De. More importantly, as De is
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enhanced, Ẇ for all the models shows a significant increase above their Newtonian
value in CV1, while in CV2 they always remain below the Newtonian value at least
in the De range of our simulations. Overall, for all the models the enhancement
of Ẇ with increasing De number in CV1 is similar to that of the excess pressure
drop enhancement (see figure 4). This is clearly not the case in CV2. Hence, one can
conclude that the excess pressure drop enhancement is controlled predominantly by
the extensional flow near the centreline in the vicinity of the contraction and expansion
region.

To further examine the mechanism that gives rise to the excess pressure drop
enhancement in the extensional dominated region of the flow, we have divided the
total stress tensor (π) into an elastic stress component due to the polymer (Σ),
a viscous polymer stress (τpv) and a solvent stress (τs), as well as the isotropic
pressure (−P I). Specifically, Σ can be obtained from the polymer stress (τp) by
eliminating the polymer viscous stress (τpv) arising from the fast relaxing modes,
which is approximated to be 2(1 − β)γ̇ . In turn, the sum of the viscous stresses due
to the polymer and the solvent (τpv + τs) is equal to 2γ̇ . For an incompressible flow
the isotropic pressure does not contribute to Ẇ , hence, the only contributions arise
from the rate of the elastic stress work (ẆE) and the rate of viscous stress work (ẆV ),
i.e. Ẇ = ẆE + ẆV , where:

ẆE =

∫
V

Σ : ∇u dV and ẆV =

∫
V

(τpv + τs) : ∇u dV. (21)

Figures 5(d ) and 5(e) show the variation of the rate of elastic and viscous stress
works versus De in CV1. In the limit of low finite extensibility, the FENE bead-spring
chain shows a decrease in ẆE at low De followed by a significant monotonic increase,
however, the variation of ẆV as a function of De for this model is not very significant.
For all other models at low De (approximately less than 0.5) ẆE quickly decreases
while ẆV slightly grows. However at high De, ẆE asymptotes to a negative value
while ẆV continues to increase monotonically. The negative value of ẆE clearly shows
that the interaction between the polymeric elastic stress (Σ) and the fluid kinematics
(∇u) results in energy recovery that manifests itself as reduction of the excess pressure
drop at low De (see figure 4).

Overall, from this analysis it can be concluded that at low finite extensibility,
the excess pressure drop enhancement as a function of De is occurring mainly due
to the enhancement of elastic stress work, ẆE . On the other hand, at high finite
extensibility the pressure drop enhancement as a function of De is mainly caused by
the enhancement of ẆV resulting from the polymer induced flow modification near
the centreline.

5.4. Role of the stress conformation hysteresis

As mentioned earlier, Rothstein & McKinley (1999, 2001) have conjectured that the
stress-conformation hysteresis observed in the contraction and expansion flow results
in a net dissipation of energy leading to the enhancement of the excess pressure
drop. Specifically they have indicated that a strong correlation exists between the
area enclosed by the hysteresis loop along the centreline of the contraction and
expansion flow and the excess pressure drop enhancement. To ascertain the validity
of this hypothesis, we have examined the stress-conformation hysteresis observed
along the centreline of the contraction and expansion flow. To this end, τp,zzwhich
is the dominant polymer stress component along the centreline as a function of



246 A. P. Koppol, R. Sureshkumar, A. Abedijaberi and B. Khomami

Tr�QQ�/Bmax Tr�QQ�/Bmax Deborah number

0 0.1 0.2 0.3 0.4 0.5 0.02 0.04 0.06 0.08 0.10 0.12

5
10
15
20
25
30
35
40
45
50
55

De = 0.372
De = 0.5

De = 0.915
De = 1.326

τ z
z

0 0 0.25 0.50 0.75 1.00 1.251.50

0.5

0.4

0.3

0.2

0.1

0
2
4
6
8

10
12
14
16
18
20
22
24

τ z
z

W· p/
V

3 seg FENE b = 225  

  
3 seg FENE 

b = 4500
 

1 seg FENE b = 225

1 seg FENE b = 1800

1 seg FENE b = 1800
3 seg FENE b = 4500
FENEP b = 300
3 seg FENE b = 225

(a) (b) (c)

Figure 6. Stress conformation hysteresis along the centreline of the contraction expansion
flow. (a) low b FENE models; (b) high b FENE models; (c) rate of polymer stress work versus
De.

the ensemble average of the normalized trace of the conformation tensor 〈QQ〉 at
representative De are shown in figure 6. As expected, the hysteresis loops at lower
finite extensibility for at low b are significantly larger than those at higher finite
extensibility due to the fact that at a fixed De the maximum value of the normalized
extension, i.e. the trace of 〈QQ〉/b is much higher at low b leading to significant
nonlinearity of the force law and hence larger hysteresis loops.

Figures 6(a) and 6(b) support the hypothesis that larger hysteresis loops give rise
to enhanced excess pressure. However, despite the fact that the rate of polymer
stress work, Ẇp ≡

∫
V

τp : ∇u dV evaluated in CV1 (see figure 6c) is a positive for

all the models, its qualitative variation with De is similar to that of ẆE depicted in
figure 5(d ). This clearly demonstrates that the pressure drop enhancement at low b is
indeed occurring due to the enhancement of ẆE , whereas at high b it occurs because
of the polymer induced flow modification captured by ẆV (see figure 5e). Hence, at
low b the area enclosed by the hysteresis loop indeed provides a good measure of the
excess pressure drop, but at high b it does not.

5.5. Vortex dynamics

To illustrate various vortex formation pathways, representative streamline patterns
have been depicted in figure 7. Overall in agreement with prior experimental findings,
our simulations have revealed two vortex formation pathways: (i) at lower chain
extensibility the size and the intensity of the upstream corner vortex significantly
increases while the downstream corner vortex shrinks (see figure 7a–d ) as De

is enhanced (see figure 7a–d ) and, (ii) at high chain extensibility, the upstream
and downstream corner vortices show a slight increase and decrease in size and
their intensity respectively as De is increased to approximately 0.25 (see figure 7e).
Moreover, at De � 0.25 a reduction and enhancement of size and intensity of the
upstream and downstream vortices, respectively, is observed. This event is closely
followed by formation of a lip vortex (see figure 7j ) that grows significantly with
further enhancement of De. Finally, at De ∼ O(1) the lip and corner vortices merge
resulting in a single large corner vortex (see figures 7g and 7h).

The variation of the measured and computed reattachment Lv of the upstream
corner vortex as well as the coordinates of its centre (ζ, ξ ) as a function of De is
depicted in figure 8. Overall as De is enhanced, Lv increases and ζ moves away from
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Figure 9. Pressure variation along separating streamlines: (a) three segment bead-spring chain
with b = 225, (b) three segment bead-spring chain with b =4500. The length of the separating
streamline (S) has been set to zero at the upper wall where it originates, when a distinct lip
vortex appears S continues to increase further along the vertical wall and then along the path
of the separating streamline of the lip vortex.

the vertical wall while ξ shifts inward towards the axis of symmetry. A departure from
this trend is observed for higher chain extensibilities at De ∼ O(1) when the upstream
corner vortex and the lip vortex merge resulting in a corner vortex with increased Lv ,
yet ζ shifts downstream towards the vertical wall. Overall, the simulations with higher
chain extensibility can qualitatively predict the vortex shape evolution as a function
of De.

In order to elucidate the interplay between the chain finite extensibility and vortex
evolution path, we have examined the pressure, polymer stretch and body force profiles
along the interface of the upstream corner vortex and main flow. Figure 9 depicts
the pressure profile at representative De for low and high chain extensibility along
the separating streamline. In general, at all De the pressure increases along the path
of the separating streamline S, that originates from the upper wall. However, in the
case when the upstream corner vortex size is significantly larger than the Newtonian
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Figure 10. Polymer stretch variation along the separating streamlines: (a) three segment
bead-spring chain with b = 225, (b) three segment bead-spring chain with b = 4500.

vortex a rather steep increase in the pressure in the proximity of the vertical wall is
noticed (see figure 9a and b). A similar increase of the pressure is observed along
the separating streamline when the lip vortex is present. This clearly suggests that
the upstream corner vortex and lip vortex growth is primarily driven by an adverse
pressure gradient. The insets of figures 9(a) and 9(b) also depict typical contour plots
of the pressure inside the upstream corner vortex that further emphasize that the flow
separation is caused by the adverse pressure gradient.

In creeping flows the magnitude of the adverse pressure gradient is determined by
the body forces. Therefore, the variation of the excess body forces due to the polymer
and the solvent relative to that of the Newtonian flow have been investigated along
the separating streamline. Figures 9(c) and 9(d ) depict the variation of the excess
body force components FS due to the polymer and the solvent in the flow direction.
As expected, the magnitude of FS for both the excess polymer and solvent body forces
increases in all cases along S for both the corner and lip vortex. Clearly, the extent
of polymer stretch determines the polymer stress and hence the polymer body force
along the separating streamline. In figure 10 the polymer stretch quantified as the
ensemble average of the normalized end-to-end distance (Q̂= 〈|

∑N

i = 1 Qi |〉/
√

b) of the
bead-spring models is plotted against the separating streamline length S. The value
of Q̂ as a function of S remains nearly unchanged for De where vortex growth is
not significant. However, at low finite extensibility, when significant upstream corner
vortex growth is observed Q̂ increases monotonically with S to a relatively high value
(see figure 10a) resulting in a large FS . This trend is not observed at high chain
extensibility when the formation of the lip vortex is observed. In this case, Q̂ first
increases appreciably only along the lip vortex separating streamline, and then as the
lip vortex coalesces with the upstream corner vortex and grows with increasing De,
Q̂ in the upstream portion of the separating streamline increases significantly along
S. Overall, this analysis clearly indicates that at low chain extensibility as De is
enhanced the flow microstructure coupling leads to a substantial increase in Q̂ along
the separating streamline of the corner vortex leading to substantial corner vortex
growth. However, at high chain extensibilities substantial increases in Q̂ is initially
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observed near the re-entrant corner leading to formation of a lip vortex that eventually
merges with the corner vortex.

6. Summary
Self-consistent multiscale flow simulations of a highly elastic dilute polymeric

solution, described by first principles micromechanical models, through a 4:1:4
axisymmetric contraction and expansion geometry has been investigated. Through
comparisons with experimental measurements, we have demonstrated that the
pressure drop evolution as a function of the flow rate can be accurately predicted
when the polymer chain dynamics is described by multi-segment bead-spring
micromechanical models that closely capture the transient extensional viscosity of the
experimental fluid. Specifically, for the first time the experimentally observed doubling
of the dimensionless pressure drop at intermediate flow rates has been predicted.
Moreover, based on an energy dissipation analysis it has been shown that the
variation of the pressure drop with flow rate is controlled by the flow-microstructure
coupling in the extensional flow dominated region of the flow. Specifically, it has
been demonstrated that at low chain extensibility excess pressure drop occurs due to
the energy dissipation caused by elastic stresses, while at high chain extensibility the
excess pressure drop mainly occurs due to significant flow kinematics modification
caused by presence of highly stretched polymers near the flow centreline in the vicinity
of the contraction and expansion region.

Finally, the influence of the macromolecular chain extensibility on the vortex
dynamics, i.e. growth of the upstream corner vortex at low maximum chain
extensibility or the shrinkage of the upstream corner vortex coupled with the
formation of a lip vortex that merges with the upstream corner vortex at high
maximum chain extensibility has been elucidated. Specifically, it has been shown that
at low chain extensibility as De is enhanced the flow microstructure coupling leads
to a substantial increase in Q̂ along the separating streamline of the corner vortex
leading to substantial corner vortex growth. However, at high chain extensibilities
substantial increases in Q̂ is initially observed near the re-entrant corner leading to
formation of a lip vortex that eventually merges with the corner vortex.
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